2025 FPIEIFFFEA I 987 K3E - EDA REPkiRTE

— FEERWR
SystemVerilog {7 7 £ B £ f £ 1L
— et
AT R B A IR A F
= FHEER

¥ 71 3 B E £ F(Simulator) 2 & K B Rt MR EREFWR KT, HEE
WHFNBIT RS EF 2R, EREERFTHEZRTE RN FE
F7, CHERITENE &N RH R REIE A F LI T s ATRIL, W B TAT
BEEMERTFBERAVZTLEREZEHFETH, BT KRG Bt R
TE AR B BT I I B, BIUR IC T “— R R Ty” Wk R, R r i Es—
A H % 4 3% 2) AL (Event-Driven)#n & #] 45 # Al (Cycle-Based) % ## £ & , Event-Driven #
HRBABLECRIENR S L ERSEH, FNMETRMBAEREENENITE,
FHW A EFT LR TR

5 R B T SIE T B9 B {7 AR B SystemVerilog % HDL % & #i 1, 3L 43%
WAL TR A BT AT XXM, EEATH R HEATAHATH R, A RREHEAEEREL
WK, KEBBT TR R E 42+ 10178 SoC, MK oy ff F ot el An B A By {7
BT T RO B R AR T 09] 4

GIEMR AR FEHERESF (HDL) HH A m R BEA W R EH A, AHQ
EAr BRI HAON G RS, HRITUATHMEE 07 E 7 0% R HATI %,
MT 3k B4R T+ B R AR D 7 BN R A B AR

- PEFTER AR
il EDANEZR Bi6X 2%

TEARFERA, REHARMERCETFE T A TERL (HE
&, R&EMEE) , BmHRHERA (WEEEI. BFRL, RRDHER) , HH)T
fo (fEFH %) FE5, BohUREERTHERNRFHRATRARS
RS R; MoK TR FELT AR EEREM - LERZ EA R K
Ro FeRld, BETHFHRENEEAFRERME, £5%5F 230 Z A7 R E 44T
htt, REFHEBRANRERRAFRZ—0 5%, BEHRATELEIEF
1 I B G K Az AT i R A 5 2R | PRI BOR R R DA B R K o e By
CENEIE

MEEREROERAANRFHEEF % “F B (GalaxSim)Z —H & T F 4
Wah BB F R A%, 55 GalaxSim FABREEZLRATLERER, H&
EREAN M msEPER, HM—F k-l ., 2FHENEEETER, AFE
HE R BT RAER, RESTFa X, HHCESNMET ARM FaWEFHE L
MiXEIL, GalaxSim EH SZHEABER, THRELEERIETAHATSIAREGFE,
GalaxSim 12 it 4t — By $ 464 1 , 4 W % £ IEEE1800 System Verilog & 7%,)L % IEEE1364
Verilog & %, A1 IEEE1800.2 UVM 77 i %, 5 & GalaxSim & & & B X 89 30iF T1E,
M IP | SoC F| Chiplet 36-1F #5 A 1R 4 89 2 JH 3 5 .

REME, RNERKSFE MRS EEHFHAE GalaxSim FHAT 7 T oy 3R
Ko BATHE I GalaxSim ¥ 4K B DB #3358 0, {# A GalaxSim 2 8y %15 4144
M Bz A B s m B, BIr I LIE T MR IF ML LR, JFa EAEAT, KA
WaEATHERRA, HFAREFHRNERAETEICEN, 5FH T UMM
GalaxSim &ty 7 R BHERFZATH O U FEAREREAENR R BT AEE, &
FHAUABERE S50 F E ™ EDA 77 BB W K3,

- PEFTER AR
il EDAIBREILGXEE

BAVTFH R EREERE CHED, SHFF N AL - CHIT R, B%
—RMFHFREM TR BHSRBFEGHLF, A5 RN ER L EEA LT B 5
FAE TG AT, BT ELERME,

v TEREFET

AR AT A — B R A G i AR A BOR SEB, SR A S i A O 1 e AT R AT M
AR, ELSZWE LRAERSFET BTEAT .

1. BRGERAK

a. EARLRENE
/I 7= 1
/I HRAGHT
int a;
/...
for (int i=0; i<100; i++) {
integer x =a * 2;

ylil=x+1;
§
/R
Na¥2 ERETE ALK, HBEEHIN, BAETAHELZITH
int a;
/...

integer x =a * 2;
for (int i=0; i<100; i++) {
ylil=x+1i;

}

b. FHEREXMA
/I 7= 2
/AT :
/I #E % F o Bk HDL R4 &, (kAL a7 by A& R L
if (a==D) $display(123);
if (a ==Db) $display(456);

=

- PEFTER AR
il EDAIBREILGXEE

/I B A AR RN EIEA, TR & R B
/I Pt AR S 5 5 /1 Al 15 5 45 2 BLE N &1
if (a = b) begin
$display(123);
$display(456);
end

. B GERATOR N B B F A
/I 71 3

/AT :

assign b =c;

assign a = b;

Il AR
/| ERFEEY, EZABMEF, b YT —4%, T A neta 5 netc HHE,
Il Y —REEERE

assign a=c;

/] 7=~ 4
I/l ARALHT

assigna=b+c+d+e+f+g

/I R Ja:

Il AR R IHHEE

// tetn s R g EEFHE, TALEHIUTE b +c+d+eHo

I B FREY, ZRUSEmEGEREZRN, BHZMANEEFFAHE

assigna=tmp0+f+g
assign tmp0 = tmpl +d +e
assign tmpl =b +c¢

/Il =5
/I AT

always @(*)
a=b;

Il AR
// always 398 & B A& T continue assign 18 % #& & A&

assign a = b;

- QEHTEN AR
D 7.\ EDANR S 1l X 2=

3. BFWREBEAIEFRLEAR
/I =Bl 6
/I RG] :
reg [255:0] w_data;
reg [256*2048 - 1 : 0] data;
assign data[0+:2048] = {w_data, 1792'b0};
assign data[2048+:2048] = {8'b0, w_data, 1784'b0};
assign data[4096+:2048] = {16'b0, w_data, 1776'b0};
/...
assign data[24576+:2048] = {96'b0, w_data, 1696'b0} ;

Iz
/B, KRERD T ZE0 R EHRFRE I RN AN, BE 1
function logic [24576+2048-1:0] F(input logic [255:0] unused);
F[0+:2048] = {w _data, 1792'b0};
F[2048+:2048] = {8'b0, w_data, 1784'b0};
/...
F[24576+:2048] = {96'b0, w_data, 1696'b0};
endfunction
assign data[24576+2048-1 : 0] = F(w_data)

T FREHR

7 AR A SR IR A 3R A BT SR M U AR LR, RATHE B A X M GalaxSim
BT B4 AL 9 A, BATH X P T B A ik b 79 A H9 GalaxSim B € X GalaxSim-Base.
FTH 23k 4 B0 AE AU B A 22T GalaxSim-Base 247 Al
1. R A A

FEARFERAAF, RATNFTA L4 XK R Pl 2T 3, BLRoe SRR kA
HEW TR, EP R EF ARG ISR E .

I FF R A1(0.3) V& 5 JF 191(0.7)
187 2 A 141 (0.2) 4 B R NFEA B
254 JF17(0.8) 24 A NFFA %K

- PEFTER AR
il EDANEZR Bi6X 2%

® NFFRF: 5FEHT R AW FZAG, A THRMMAE XA KT 2,

o REAP: WELRWMSEZTAL T, AT HENRT L,

o FEApl: mERAGRE RA 12 BMAERA, MRGIRFRHL, A
b A ATH R E R

® ol kM — M RE&k—MAELE IC &k, # 4w CPU, DSP, AXI &
BMRE, UEAGATREE S M AR, WA AS THEREE, Hw
or1200, ¢910, xiangshan % .

o Y RAM: T EARRMMA, SFHT ARG, FHFIATH AR
o, [B A3 B A A4 XX e R R BIBOT M, — BB0A N A A, X B IR
BRCFRHAT RO RS (MEWNEEATRA EMEeNTRAE) , T—X
B 2 J5 X BT R 3k AT, XA G A AT BRI B e, & R A
x4, LHRANEREG - hALLE . IASFEARSHRETHR N NE &AM
WHE, ¥RAGMELHEGEHH LR, BEAEERLZENEERAN,

REFRFAH 1 5 RAERE 6 MUITRBE N SE, H P a4 4462 A
2 e R, R, RINERSFEREREA AR TRSE TS, RERGEESR
Ja 3 BT B 5RAE NA

T AA MR A G, HATHBE MW — 2 TR Z X7 LRI GalaxSim-Base
MREAE, XABEEENSRELERABREGT2IE, HTHEIAFAA, 5
FRH AR AR X B A TR AR N B
2.

FATH R Bt GalaxSim & license ¥R, 53 # 7 AR NEMBN RS ERE TH
WL B 34T SR I KA AL o

- QEHTEN AR
m/\ EDAKE S 1k X 2%

FHMAR Find optimization opportunities
BEEH AT koAbt Existing Experience Thesis Research Public Cases
+ SRR N = Experience Research
—
Third-party Tool Public Cases + GalaxSim Profile Research
$=/TA AFAIB + GalaxSim Reference
E25 Profiledfi5:
Implement optimization algorithm module
_ (Use the provided GalaxSim open data interface)
TR EERLR J
=fEFIR A GalaxSimF R EHBIE - i
l Test the optimization effectiveness on public test cases locally
At izt £ 7 IR (kA B (For challenging optimization, recommended designing custom fest cases)
=M FEAEHELL, BReREQiTHERG>
Satisfied with
e optimization 2
Y
¥
=2, ME. 1T9 Submit, test, score
<HBEABE= (After contest starts)

GalaxSim-Base & (1) Wik 0, 55584 72 4 i HI A0 2 AT H1 2 B 0 o7 AR 1k
MR, WHEIT G, £I110F 20K T A4 E4T GalaxSim-Base + S5 # L&, I
AR BRI, BENRANME. BEMETET R TE5E “Fak

BT HATUUR G R AT Ak b, RAVE B0 5 5 # @4 k2RI
R, BIHREFERRA R, UREEFWMRAE, SRR T L,

T E) T 5583 09 4 SR oA o f 5 &k 2| GalaxSim

- PEFTER AR
il EDAIBREILGXEE

A 4

Parse & Elab - C_orr_mll»_e » gen code xsim
Optimization
/ Compile Optimization \
necessary auto call necessary
pre actions CTOptimizations() post actions

|

Your Work

RTL Source

unsigned CTOptimizations() {

Nl do your work

3. XA

RAVH E B FH ALK W F N0 Hvoid CTOptimizations()” , % 5% 3 W Fr H At
T, BEEFRTEMAEENEINUR S MECE EZ AW ETERE, N
EZEBRT TR SHRFFUDSERARRBCHRLMESE, d8EHL N
optimizations.so,

23R W1k i VA zip 48 SCH B R R PEAT 4R &0, XU 4 48—) “submission.zip™,
submission.zip F J 8,4 5 58 f b B % 89 3 A B U1 (optimizations.so) KT 4K #i By 5
=7 kX Fu B S, E, optimizations.so XU SA UL TR R E 45 AR B R, H

R0 B R 5 RE BATALR,

- PEFTER AR
il EDANEZR Bi6X 2%

submission.zip X #HE X 21 9 M4 J5, ¥ B s #E, HHAT GalaxSim £
J¥ o GalaxSim ¥ & 3 w3 5 5% 8 R 09 AL E R 20 A B o A S AN B AT BB AT B b
&, WA T RN E % BT,

5 HE#FERER ARG SystemVerilog % 1HiE LM, A RERGEWAEF
RAFW, WRSRENRARE T EXENRFRGEALKR, RFESFLORTFHE
FEHR (= R A E A AR T B N T A AT) R B i R S I A
A 5 3 AR B B EIF 9 00 BB, SRiF 13T £ 09 BUNMR Y & B R AP 4

75 VESHRE

RAVRE GalaxSim K B A RIZAT, £iF0F, FiA W REBATH BB IFNFE 4R
7€ 0 3 % 3 Wy 3 b B 8] (Wall Time), i A 3F 2034 2 T R kA ik 4T, B &
EECEATRBAIE L, AENMROAFAT 10 ARAF, XFDATH B By &RAEM
RAMEJE, AT BEAFHME, 1B RRM AN RFLER,

KA SUEA AT AR FH G Ratio 20T

Ratio = GalaxSim Base Data / Your Data

Hop —1{p g #0484 GalaxSim Base #9& I 4 4%, GalaxSim Base A% | T %1%
R LA A . GalaxSim Base B #(48 # £ #2 65, Your Data JU £ & X & J5 2 T AL X

AT, MTEANMAKEG, KATZ 4 AR FwAT

<% CMR (Compile Memory Improve Ratio)

CMR = GalaxSim Base CM / Your CM

4 CTR (Compile Time Improve Ratio)

CTR = GalaxSim Base CT / Your CT

- PEFTER AR
il EDAIBREILGXEE

< RMR (Run Memory Improve Ratio)
RMR = GalaxSim Base RM / Your RM
% RTR (Run Time Improve Ratio)
RTR = GalaxSim Base RT / Your RT
et T4 AN R A B 2% R AT 9 (Performance per case), & XA
Perf per case =0.1 * CMR + 0.2 * CTR + 0.1 * RMR + 0.6 * RTR
Blim, BIEENSRNE, EENRO AL ABR E, Memory HAELT, %4
T AR RO R R Hy 80% (B[] 0B By 1.25 fF) , sBATHI M s 4R A 20wy 2 1%
(BATE I 0 FLER 0.5 4%) , NZ AR A 1% 3R 5] B9 P e 45 20 0
Perf per case=0.1*1+0.2*0.8+0.1 *1+0.6*2=1.56
B ERMREE, RAEMEESF 23 4TH 4 1T 2 (RankScore_per_case): 1% 5 4%
ABAN, ERAM, FRREFEUTAXIE:
RankScore per case=10*(N-M+1)/N
®—214510 4, % Z4%FN-1)*10/N......
Bln, BEA 26 MEFERE, ENKNEEENAG Ly Fodks s 11,
T 322 BA A A 3% R 1) b i 4 PR 2 A
RankScore per case=10* (26 -11+1)/26=6.15

oA AR B B - B A AR A B i g K2

WEXZ T
RAPIEAR | HA T RKPRKE
T L 0.3
ISE Wikl 0.7
18] . il 1 0.2
il 0.8

10

- PEFTER AR
il EDAIBREILGXEE

SHRMNERLEF 2 IHE LA
FinalScore = 0.3*%0.2* Z RankScore(public basic cases)
+0.3 *0.8 * Z RankScore(public comprehensive cases)
+0.7*0.2* Z RankScore(hidden basic cases)
+0.7*0.8 * Z RankScore(hidden comprehensive cases)
ERED
< CM/CT/RM/RT # # 4 4t i1 1# Al GalaxSim 7 5 4= {3 # profile H/L %
o RFEANMKXA S FRAEEAETRZILTK, NWRALIEATH N O
& JREANM KA G ERFH RS EABATH R, WRAIEFH Y O
* AR EREABEFHRNBTERY 2 LMK (27 3 LI BEHAUK
F, MEIMARKFEEEN)
* WRERAAZ LSRN F2HME, Wik A TWFHTHF: 856, HEEE
T 20 BB SR B T HE T an R AR, Ak R e R BT o IR T R 52 2 A
W AR, 4% %6 F] b9 RTR(RunTime Ratio) i 7 & 184 /7
+t. 2EHEN
[1] IEEE Standard for SystemVerilog-Unified Hardware Design, Specification, and
Verification Language, 2017
[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Academic
Press, 2002. ch12.3
Ny HIREAFTEER
1. FHEH AL EEA Event-Driven Simulation Model
*t SystemVerilog 1 3£ #3% 1 (dut) F2] iX f7] (testbench) 4T 17 & & T & # ZF 1F

ATHREA RS, — ¥ 2 F 1 F 7 (update event) 1 2 14 1F fl (evaluation event), 7 # 4P

11

- PEFTER AR
il EDAIBREILGXEE

WE XK FE 1 (event), F 1 F # — M Z1F net/variable I HY Kt ZHTFEZXNEHE
Hr o B2, update event 2 fik & evaluation event,

EEHR AT, B — N EEBAEH [E (time, or simulation time), A 3 52
B Rt o A, time B AR BE R R B, KT EF BB clock 55 8 77 T A
B 8] ¥ 7 1 — 41 B [B] 4 (time slot) 41k, — /M3 — By F AR W T S R HOA N R TR
Aty — AN B4 B (cycle),

AT ERHME XEEZ WX R, FRAEA — A5 — 1 i 5 4 (time slot)
DA % AT R K BB F PP (region), FFR KA HY RTL AL ZE & 2| X L EY region
B, by EAE AL B AT, b2 dE [2 R 8 (nonblocking assignment) £ # 1 £ 2| NBA
events region ## 47, & SystemVerilog 2017 LRM (Language Reference Manual) ¥, =
XT 17 BAREWEERT, dE5FEZT T, 70T F 60 E 4R X R B A
I ERMEA]; SRWREETZH P NE, THEHRGAFRAEHTERER
B AL

T Mk SystemVerilog LRM # {5 A £ A (A, A X0 5 54 3 — F B #
FUHR e A G AR, 5% H] H#ESE SystemVerilog LRM FH % 4 %,

execute_simulation {
T=0;
initialize the values of all nets and variables;
schedule all initialization events into time zero slot;
while (some time slot is nonempty) {
move to the first nonempty time slot and set T;
execute_time_slot (T);

}

execute_time slot {
execute region (Preponed);
execute region (Pre-Active);

12

- QEHTEN AR
m EDAKE S 1k X 2%

while (any region in [Active ... Pre-Postponed] is nonempty) {
while (any region in [Active ... Post-Observed] is nonempty) {
execute region (Active);
R = first nonempty region in [Active ... Post-Observed];
if (R is nonempty)
move events in R to the Active region;
}
while (any region in [Reactive ... Post-Re-NBA] is nonempty) {
execute region (Reactive);
R = first nonempty region in [Reactive ... Post-Re-NBA];
if (R is nonempty)
move events in R to the Reactive region,;
}
if (all regions in [Active ... Post-Re-NBA] are empty)
execute region (Pre-Postponed);

}

execute region (Postponed);

execute region {
while (region is nonempty) {
E = any event from region;
remove E from the region;
if (E is an update event) {
update the modified object;

schedule evaluation event for any process sensitive to the object;
} else { /* E is an evaluation event */

evaluate the process associated with the event and possibly
schedule further events for execution;

2. Jr#% DB Wkit &5 RTL Beftx &
a. X®EZXEZEX DB it
R 4% SystemVerilog LRM & % % % F#it, FL AR By 1& 7 & K @ 4F scope, expr, operator,
statement, task/function, data type, process <, T HEKIELE X, RAFHKH

GalaxSim & B DB £ A E T FE2 BT,

13

- QEHTEN AR
DA EDAKE S 1k X 2%

XCMode
XCScope KCStmt KCE=pr XCType Others
l/ h 4 h ¥ i/
XCModule HCTask diff stmts diff exprs diff types XCBaseSig XCProcess

— Be% 149 HDL 38 3% % 0 R K 7T

v" XCNode

BT s ik 8 n K i 32k, 42 B GetLoc(), GetAttribute() 5 # 1 .

v" XCScope

X R SystemVerilog scope By A, AT I #P 7 & & “definition” #y 1 7% JT 3 # 7 #%
Z K —> XCScope, . # module, block, class, task, function % ,

XCScope T M NE I H AN EWIFBETRAATHMAERE, THL
SystemVerilog LRM F #f % 23.9 %7,

v’ XCStmt

B, THRE,

v' XCExpr

RERX, THE,

v' XCType

KR RFHE,

v" Others

Z ?i%%—%jﬁ%fﬁo

14

- QEHTEN AR
DA EDAKE S 1k X 2%

v XCDesign

BT PRI R A

FAN, RATRBT Visitor BRI, T LS AR HT8F R
b. RTL 5 DB ¥ 8th % £ %4

module top; <- XCModule

reg[1:0] a = 0; <- XCBaseSig, (with type XCPackedArrayType, with
initial value XClnt)

reg[3:0] b; <- XCBaseSig

reg clk = 0; <- XCBaseSig, (with type XCBuiltinType, token 'reg')

initial begin <- XCProcess, (with token 'initial')

1 clk = ~clk; <- XCDelayContrl stmt, (with delay Expr, and

XCBlockingAssign stmt)

end

M inst(clk, a, b); <- XClnst, (with XCPortConnect)

initial begin

#10;
$display(b * 5+ 6 -b/2); <- XCSysTaskCall()
$finish(); <- XCSysTaskCall()
end
endmodule

module M(input reg clk, input wire[1:0] a, output reg[3:0] b);

reg[1:0] c = a;

always @(posedge clk) begin <- XCProcess, (with token 'always')
o=@ l: <- XCBlockingAssign
if (c == 0) begin <- XCIfElse

b=b+1; <- XCBlockingAssign

end

end

endmodule

st & DB ¥ &, # UUE F node->GetPrettyPrintedString() % B 4T B i ok ¢y
P RTL AR

R AR AL, AR Q&A

15

- QEHTEN AR
m EDAKE S 1k X 2%

2025 China Postgraduate IC Innovation
Competition * EDA Elite Challenge Contest

1. Problem
SystemVerilog Simulator Performance Optimization

2. Problem Designer
XEPIC Corporation Limited

3. Problem Background
Digital front-end verification simulation (Simulator) is a core process in the integrated circuit
(IC) design and verification, with its significance spanning the entire lifecycle from design
conception to chip mass production. Digital simulation in IC design is a critical competitive
factor that determines the success or failure of a chip. It utilizes computers combined with
test stimuli to simulate the chips’ operation in real-world conditions, enabling engineers to
check whether the results meet expectations through various debugging methods. By
employing “virtual trial-and-error”, it confines design risks to the front-end verification phase,
where costs are minimized, making it a key enabler of “first-time success” in modern IC
design. Digital simulators are typically classified into two types: Event-Driven and Cycle-
Based. Event-Driven simulators simulates circuit state updates via an event queue, where
each signal change triggers the recalculation of related logic, requiring strict adherence to
timing accuracy.

In the field of IC verification, digital simulators read hardware description languages

16

- QEHTEN AR
m 7.\ EDANR S 1l X 2=

(HDLs) such as SystemVerilog, process them during compilation to generate executable files,
and then simulate circuit behavior at runtime. With the exponential growth in IC
complexity—from early chips with tens of thousands of gates to today’s billion-gate SoCs—
excessively long simulation times and enormous memory requirements have become critical
bottlenecks hindering verification efficiency.

Compile-time optimization is a key step in transforming HDLs into efficient simulation
models. Its core objective is to eliminate redundant computations and construct specialized
execution engines tailored for simulation scenarios through static analysis and code rewrite,
thereby improving simulation performance and reducing simulation memory.

In general compilation techniques, compile-time optimizations can typically be
classified by their objectives and methods into computation optimizations (e.g., constant
folding, algebraic simplification), control flow optimizations (e.g., condition merging, loop
optimization, dead-code elimination), and memory access optimizations (e.g., loop tiling).
Some of these optimization strategies might directly bring results at excellent compile time,
while others can only achieve effectiveness after adaptation based on specific language
features. Particularly, given the event-queue scheduling nature of digital simulators,
optimizing the scheduling queue or events during compilation is one of the unique compile-
time optimization techniques for digital simulators. Actually, compile-time optimizations
may face challenges such as trade-offs between increased compilation time and reduced
runtime execution, uncertainty in optimization effectiveness, and potential disruption to
debugging functionality.

X-EPIC digital simulator product “GalaxSim” is an event-driven digital circuit

17

- QEHTEN AR
m 7.\ EDANR S 1l X 2=

simulator. As an independently developed, high-performance, new-architecture simulator,
GalaxSim was created through the collective expertise of industry veterans and refined in
collaboration with several leading domestic clients. GalaxSim innovatively uses a new
software framework that provides multi-platform support and has been successfully tested on
multiple domestic ARM-based platforms. GalaxSim supports various usage modes and is
compatible with diverse verification tools for co-simulation. GalaxSim provides a unified
data interface, fully supporting IEEE 1800 SystemVerilog syntax, IEEE 1364 Verilog syntax,
and IEEE 1800.2 UVM methodology. Suitable for verification tasks at all levels—from IP
and SoC to Chiplet validation—GalaxSim delivers excellent applicability across a wide range
of scenarios.

This contest problem requires participants to explore simulation optimization using X-
EPC digital simulator GalaxSim. partial underlying DB APIs of GalaxSim will be exposed.
Leveraging the dynamic auto-loading mechanism of GalaxSim’s compile-time optimization
module, participants should devise several compile-time optimization strategies and run the
simulation correctly with improved runtime performance and acceptable increased
compilation overhead. Participants can utilize the simulator framework and runtime
diagnostic tools of GalaxSim to identify potential optimization opportunities. Through
solving this problem, participants will have the opportunity to directly engage in the
development of a leading domestic EDA digital simulator, contributing to its advancement.

The exposed underlying data modules are C++ APIs, so participants should master basic
C++ development skills. Having some compilation background may help participants get

started more easily. Basic IC knowledge could aid in better understanding the simulation

18

- QEHTEN AR
m EDAKE S 1k X 2%

process, but it is not mandatory requirements.
4. Problem Analysis
This section uses examples of common compile-time optimization techniques to
illustrate how compile-time optimizations impact runtime performance. Participants may
refer to additional materials for more optimization techniques.
1. General Compilation Optimization Techniques

¢. Loop Invariant Code Motion

// Example 1

// Before optimization :

int a;

/...

for (int i=0; i<100; i++) {
integer x =a * 2;
yli]=x+1;

b

// After optimization:

// a*2 is loop-invariant and has been moved outside the loop to avoid redundant
computations during iteration
int a;
/...
integer x =a * 2;
for (int 1=0; 1<100; 1++) {
ylil=x+1

}

d. Conditional Statement Optimization

// Example 2
// Before optimization:

// This coding style is commonly seen in HDL code for digital circuit design
if (a==Db) $display(123);
if (a ==Db) $display(456);

/I After optimization:

19

- QEHTEN AR
m EDAKE S 1k X 2%

// By merging conditional statements that have same conditions, the number of condition
judgments can be reduced
// For example, using specific values of control signals or enable signal as conditions
if (a==D) begin
$display(123);
$display(456);
end

2. Application of General Compilation Optimization Techniques to Digital Simulators
// Example 3
// Before optimization :
assign b =c;
assign a = b;

/I After optimization:

// In digital circuits, within this set of assignments, “b” essentially acts as a group of
wires, allowing direct connection between net “a” and net “c”,
// thereby reducing one value propagation.

assign a =c;

// Example 4
// Before optimization :

assigna=b+c+d+e+f+g

/I After optimization:

// This optimization reduces computational load
// For example, when only “f/g” values change, recompute of "b + ¢ + d + " can be avoided
// In digital circuits, this optimization increases value propagation overhead, so its application
requires careful consideration

assigna=tmp0+f+g

assign tmp0 = tmpl +d +e

assign tmpl =b +c¢

// Example 5

// Before optimization:
always @(*)

a=b;

/I After optimization:

/I The scheduling cost of always blocks is higher than the value propagation cost of
continuous assignments.
assign a = b;

20

- PR AR
EiOD/\ eoris s uirs

3. Digital-Simulator-Specific Compilation Optimization Techniques

// Example 6

// Before optimization:

reg [255:0] w_data;

reg [256*2048 - 1 : 0] data;

assign data[0+:2048] = {w_data, 1792'b0};

assign data[2048+:2048] = {8'b0, w_data, 1784'b0};
assign data[4096+:2048] = {16'b0, w_data, 1776'b0};
/...

assign data[24576+:2048] = {96'b0, w_data, 1696'b0};

/I After optimization :

/I Through optimization, the size of the event queue scheduling list in this example is
significantly reduced to just 1.
function logic [24576+2048-1:0] F(input logic [255:0] unused);
F[0+:2048] = {w _data, 1792'b0};
F[2048+:2048] = {8'b0, w_data, 1784'b0};
/...
F[24576+:2048] = {96'b0, w_data, 1696'b0};
endfunction
assign data[24576+2048-1 : 0] = F(w_data)

5. Problem Description

To accurately reflect the intended optimization effects of participants’ designed algorithms,
the existing optimization features in GalaxSim will be disabled. The version of GalaxSim
with optimizations disabled is define as GalaxSim-Base. All participants’ optimization
algorithms are executed and tested based on GalaxSim-Base.

1. Test Case

In this contest problem, test cases are defined along two dimensions. The specific
definitions and the number of provided test cases are shown in the table below, where the

numerical value following each category title indicates its scoring weight:

Public Cases Hidden Cases
(0.3) (0.7)

21

- QEHTEN AR
m EDAKE S 1k X 2%

Basic Cases (0.2) 4 Undisclosed
Comprehensive Cases)
2 Undisclosed
(0.8)

Test Case Categories:
® Public Cases
o Fully accessible to participants.
o Used for optimization research and local scoring evaluation.
® Hidden Cases
o Completely inaccessible until the contest conclusion.
o Used exclusively for closed-book evaluation.
® Basic Cases
o Typically contain 1-2 bottleneck issues (e.g., a single expression occupying
tens of thousands of lines).
o Relatively simple test structures.

® Comprehensive Cases

o Represent real-world IC designs (e.g., CPUs, DSPs, AXI bus modules).
o May contain multiple simulation bottlenecks.
o Complex test structures (e.g., or1200, ¢c910, Xiangshan).

® Extended Cases

o Developed by participants for challenging optimization scenarios.

o Evaluated by X-EPIC team. Valuable cases will be added to the public case
pool (classified as basic/comprehensive).

o Adopted cases receive cash rewards. For details of submission formats,

22

- QEHTEN AR
m 7.\ EDANR S 1l X 2=

timelines, and other rules, refer to the official contest guidelines.

For this contest problem, participating teams will receive 6 reference design
examples in advance, including:

o 4 Basic Cases (with 1-2 bottleneck issues)

e 2 Comprehensive Cases (representing real-world IC designs like CPUs/DSPs)

Additionally, Hidden Cases will be provided exclusively for closed-book evaluation.
All hidden cases will be disclosed to participants after the contest conclusion.

For all test cases, a set of GalaxSim-Base reference data obtained through scientific
sampling methods are provided, which serve as the scoring benchmark for evaluating the
optimization effectiveness of participants’ algorithms.

2. Optimization Flow
GalaxSim license resources are provided for participants to conduct algorithm

development and optimization debugging on offered cloud servers or own local machines.

23

- ':Pliliﬂ'a*{EI_E_’_E‘ll“rLﬁ"KE
EDAIE % HibX z

Find optimization opportunities

Public Cases

Existing Experience Thesis Research + Experience Research

Third-party Tool

Public Cases + GalaxSim Profile Research
Reference

Y

Implement optimization algorithm module
(Use the provided GalaxSim open data interface)

Y

Test the optimization effectiveness on public test cases locally
(For challenging optimization, recommended designing custom test cases)

Satisfied with
e optimization 2

Y
¥

Submit, test, score
[After contest starts)

GalaxSim-Base provides diagnostic options, allowing participants to evaluate algorithm
optimization effects during both compilation and runtime. After the contest begins, a
dedicated scoring tool will execute GalaxSim-Base and participant optimization libraries,
automatically compare results with benchmark data, and generate test case scores. For
specific scoring calculation methods, please refer to the “Scoring Criteria”.

In addition to the disclosed optimization strategies in the form of test cases, participants
are encouraged to acquire the knowledge of design compile-time optimization through
various channels to achieve better optimization results and improve test case scores.

The following diagram illustrates how participants’ optimization strategies will be

24

- QEHTEN AR
m EDAKE S 1k X 2%

integrated into GalaxSim.

RTL Source Parse & Elab C_orr_mil»_e » gen code —b{ *sim ‘
: « Optimization

/ Compile Optimization \
necessary auto call necessary
pre actions CTOptimizations() post actions

A 4

Your Work

unsigned CTOptimizations() {

Nl do your work

3. Submission Instructions

Participants' optimization algorithms should use void CTOptimizations() as the main
entry point. All optimization work, including but not limited to implementing multiple
optimization algorithms and iterative cycles between them, must be completed within this
function. Participants must submit their optimization algorithms as a dynamic library
named optimizations.so.

Participants’ submissions shall be in ZIP format with the unified filename
submission.zip. The zip file must contain the dynamic library file of the optimization
algorithm (optimizations.so) and required third-party header files and library files. Note that

the optimizations.so file must be placed in the root directory of the submission package,

25

- QEHTEN AR
m 7.\ EDANR S 1l X 2=

while other dependency files can be organized in directory structures at participants’
discretion.

After the submission.zip file is uploaded to the scoring server, the zip file is
automatically extracted and GalaxSim main program is executed. GalaxSim loads the
optimization algorithm dynamic library submitted by participants. Upon successful execution
of compilation and simulation run, the scoring tool generates the evaluation score.

Participants must ensure semantic equivalence of the SystemVerilog design before and
after optimization and guarantee the reliability of the provided program. The test case score
will be 0 if (including but not limited to)

® The participant’s optimization alters semantic equivalence causing simulation failure.

® The program contains errors that lead to compilation failure, such as unhandled null
pointers, memory leaks due to unreleased pointers, etc..

Additionally, excessive compilation overhead negatively impacts the final score.

6. Scoring Criteria

GalaxSim is restricted to single-threaded execution. For scoring purposes, all runtime-
related metrics are defined as end-to-end Wall Time. All scoring tests are conducted using
scientific sampling methodology: each test case is executed 10 times on a machine without
other workloads, after which the maximum and minimum runtimes are discarded, and the
arithmetic mean of all remaining measurements is taken as the final sampled result for that
test.

The improvement ratio for a single metric is defined as follows:

Ratio = GalaxSim Base Data / Your Data

26

- QEHTEN AR
m 7.\ EDANR S 1l X 2=

where one benchmark dataset represents the performance data of GalaxSim-Base (with
compile-time optimizations disabled by default). The GalaxSim Base Data is provided in
advance, while Your Data is collected through scientific sampling after each submission.

For example, suppose a participant team achieves the following optimization results on
a test case: memory consumption remains unchanged, compilation performance decreases to
80% of baseline (time becomes 1.25x baseline), and runtime performance improves to 2x
baseline (runtime becomes 0.5x baseline). Then the team's performance score for this test
case would be:

Perf per case=0.1*1+02*08+0.1 *1+0.6*2=1.56

After the correctness check, the ranking score (RankScore per case) is calculated based

on performance score: Given N participants and a rank position M, the score is computed

using the following formula:

RankScore per case=10*(N-M+1)/N

The first place scores 10 points, the second place scores (N-1)*10/N points, and so on.

For example, if there are 26 participating teams and a team ranks 11th in performance

score for a particular test case, then the team's ranking score for that test case would be:

RankScore per case=10* (26 -11+1)/26=6.15

The final total score is obtained by calculating the weighted sum of scores from each

27

- QEHTEN AR
m EDAKE S 1k X 2%

test case.

The scoring weight is as follows:

Case Type Summation Weights for Ranking Scores
Public 0.3
Hidden 0.7
Basic 0.2
Comprehensive 0.8

Calculation formula for the final total score of participating teams:

FinalScore = 0.3*0.2* Z RankScore(public basic cases)
+03*0.8 * Z RankScore(public comprehensive cases)
+0.7*0.2* z RankScore(hidden basic cases)

+0.7*0.8* z RankScore(hidden comprehensive cases)

Cautions:

s CM/CT/RM/RT data statistics utilize GalaxSim’s built-in profile mechanism.

% If a participating team has no submission record for a test case, all improvement
ratio metrics will be 0.

¢ If a test case passes compilation but fails during runtime, all improvement ratio
metrics will be 0.

% All numerical values in score calculations retain 2 significant digits (discarding
digits beyond the 3rd significant digit, with rounding applied to the 3rd digit).

¢ In case of tied final scores between multiple teams, ranking will be determined in

the following order:

28

- QEHTEN AR
m 7.\ EDANR S 1l X 2=

1. Earlier teams achieving the score will rank higher.

2. Iftiming is identical, teams will be ranked by comprehensive case scores.

3. If comprehensive case scores are identical, ranking will be determined by RTR

(Runtime Ratio) scores of comprehensive cases.
7. References
[1] IEEE Standard for SystemVerilog-Unified Hardware Design, Specification, and
Verification Language, 2017
[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Academic
Press, 2002. ch12.3
8. Appendixes
1. Event-Driven Simulation Model

The simulation of System Verilog-described designs (DUT) and testbenches (TB) operates on
a discrete-event execution model, which can generally be divided into update events and
evaluation events - both defined as events. An update event typically refers to changes in
net/variable values. evaluation events responses to update events, where update events trigger
evaluation events.

In event-driven simulators, another important concept is time (or simulation time). From
the perspective of real-time progression, time is decomposed into a time sequence, analogous
to the square wave sequence of clock signals in digital circuits. The time sequence consists
of a set of time slots, where a single time slot can typically be simply regarded as one clock

cycle in digital circuits.

29

- QEHTEN AR
m EDAKE S 1k X 2%

To more precisely define the relationships between events, the simulation model
typically divides each individual time slot into multiple regions of different event types,
scheduling various RTL processing operations into their corresponding regions for execution
by the simulation model. For example, nonblocking assignments are scheduled to the NBA
(Nonblocking Assignment) events region for execution. The SystemVerilog 2017 LRM
(Language Reference Manual) defines 17 distinct event regions. For competition participants,
it is not necessary to fully master the differences between these various scheduling regions;
however, understanding this aspect could enable deeper optimizations of the event-driven
simulator.

Attached below is the pseudo-code of the simulation algorithm from the SystemVerilog
LRM for interested participants to better understand the event-driven simulation model. For

reference, please also consult Chapter 4 of the SystemVerilog LRM manual directly.

execute_simulation {
T=0;
initialize the values of all nets and variables;
schedule all initialization events into time zero slot;
while (some time slot is nonempty) {
move to the first nonempty time slot and set T;
execute_time_slot (T);

}

execute_time slot {

execute_region (Preponed);

execute region (Pre-Active);

while (any region in [Active ... Pre-Postponed] is nonempty) {

while (any region in [Active ... Post-Observed] is nonempty) {
execute region (Active);
R = first nonempty region in [Active ... Post-Observed];
if (R is nonempty)
move events in R to the Active region;

30

- QEHTEN AR
m EDAKE S 1k X 2%

}

while (any region in [Reactive ... Post-Re-NBA] is nonempty) {
execute region (Reactive);
R = first nonempty region in [Reactive ... Post-Re-NBA];
if (R is nonempty)
move events in R to the Reactive region,;

}
if (all regions in [Active ... Post-Re-NBA] are empty)

execute region (Pre-Postponed);

b

execute region (Postponed);

execute _region {
while (region is nonempty) {

E = any event from region;

remove E from the region;

if (E is an update event) {
update the modified object;
schedule evaluation event for any process sensitive to the object;

} else { /* E is an evaluation event */
evaluate the process associated with the event and possibly
schedule further events for execution;

b
2. Design of Open DB and Its Mapping Relationship with RTL

a. Key Syntax Elements and Database Design

According to the SystemVerilog LRM syntax reference manual, fundamental syntax
elements include scope, expr, operator, statement, task/function, data type, and process.
Based on these core syntax elements, the basic design diagram of the underlying GalaxSim
database we have opened is as follows.

Common HDL syntax elements and their representations:

v XCNode

Base class for all syntax element classes, providing interfaces

31

- QEHTEN AR
m 7.\ EDANR S 1l X 2=

like GetLoc() and GetAttribute().

v XCScope

Corresponds to the SystemVerilog scope concept. Any syntax element that can contain
“definitions” internally (such as module, block, class, task, function, etc.) can be called an
XCScope.

XCScope provides corresponding interfaces for CRUD operations on the contained
syntax elements. Refer to Section 23.9 of the SystemVerilog LRM manual.

v XCStmt

Statements, which can be nested.

v XCExpr

Expressions, which can be nested.

v XCType

Base class for the type system.

v Others

Representations of other syntax elements.

v XCDesign

Represents the root node of the use’s entire design.

Additionally, an implementation of the Visitor pattern is provided to support participants
in traversing the design.

b. Examples of RTL-to-Database Design Mapping Relationships

module top; <- XCModule
reg[1:0] a = 0; <- XCBaseSig, (with type XCPackedArrayType, with
initial value XClnt)
reg[3:0] b; <- XCBaseSig
reg clk = 0; <- XCBaseSig, (with type XCBuiltinType, token 'reg')

32

- QEHTEN AR
m/\ EDAKE S 1k X 2%

initial begin <- XCProcess, (with token 'initial')
1 clk = ~clk; <- XCDelayContrl stmt, (with delay Expr, and
XCBlockingAssign stmt)
end
M inst(clk, a, b); <- XClInst, (with XCPortConnect)

initial begin

#10;
$display(b *5+6-b/2); <- XCSysTaskCall()
$finish(); <- XCSysTaskCall()
end
endmodule

module M(input reg clk, input wire[1:0] a, output reg[3:0] b);

reg[1:0] c = a;

always @(posedge clk) begin <- XCProcess, (with token 'always')
c=c+l; <- XCBlockingAssign
if (c == 0) begin <- XClIfElse

b=b+1; <- XCBlockingAssign

end

end

endmodule

For any database node, the user-readable RTL code can be obtained using

node->GetPrettyPrintedString().

*For questions not covered in this guide, please refer to the Q& A document

33

